Problems

- Diagrams &

- Highway of the
- Jingle Balls

Absurdistan Roads (1/2)

Absurdistan Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Problem

Given shortest distances in a connected graph with N vertices and edges, reconstruct the original graph.

- Let *H* be the graph given by the shortest distances.
- Minimum spanning tree T of H is part of the solution.
 - Take a set S and its complement \overline{S} .
 - The shortest distance between two vertices in *S* and *S* must be realized over one edge.
 - Start with S = {1}, at each step add the shortest edge between S and S this is Prim's algorithm.

Absurdistan Roads (2/2)

Absurdistan Roads

- Battle for Silver
- Card Trick
- Diagrams & Tableaux
- Exponentia Towers
- First Date
- Grachten
- Highway of the Future
- Infix to Prefix
- Jingle Balls

Solution

- Spanning tree T has N 1 edges, so we need one more edge.
- Find the shortest distance in *H* that is not possible using *T*, add it as an edge.
- Total time complexity is $\mathcal{O}(N^2)$.

Battle for Silver

Absurdista Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Find all cliques in given graph: Clique Problem (NP-Complete). Note that graph is *planar*! Kuratowski''s theorem: *Maximum clique size is 4*. Therefore, naïve approach suffices:

Naïve approach

- Find all cliques of size 2 (given by all edges);
- Find all cliques of size 3;
- Find All cliques of size 4;
- Output loot of clique that provides highest loot (not from the largest clique)!

Card Trick

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachter

Highway of the Future

Infix to Prefix

Jingle Balls

Naïve approach

- Try X random card configurations and calculate final card
- Depending on X: either too slow or incorrect, probably both

- Insight: for every known card, the probability is 1
- For every unknown card, try every possibility
- Speed up with dynamic programming

Diagrams & Tableaux (1/2)

Problem

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableau×

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Given a diagram, count the corresponding tableaux

Given , count 11 11 12 12 13 13 22 23 2 3 2 3 3 3

Diagrams & Tableaux (2/2)

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

- Maximum output: 27 million
- Backtracking: top to bottom, bottom to top, left to right, right to left
- Don't forget to prune the search tree: e.g. never put a number < k in the kth row from the top when going from bottom to top
- Dynamic programming: e.g. over the number of different columns; a columns of height H admits (^N_H) different labelings
- There even exists a closed formula takes O(N²) steps to evaluate

Exponential Towers (1/4)

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponential Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

• Let $n = \prod p_i^{n_i}$, how many ways to write n as a power?

• let $g = gcd(n_i)$, and let $t = \prod p_i^{n_i/g}$.

• Then $n = t^g$.

Some preliminaries

Every decomposition g = u * v gives rise to a representation of n as a power (and vice versa):
 n = t^{u*v} = (t^u)^v

Exponential Towers (2/4)

And now for the problem

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponential Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Let n = a^{b^c}, let g be the gcd of the exponents of a, and let a = x^g,

• then $n = x^{g*b^c}$, let $B = g*b^c$, so $n = x^B$. Forget about x.

■ B can be huge, but its prime decomposition is easily obtained: B = ∏ p_k^{B_k}.

Exponential Towers (3/4)

Algorithm

. . .

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponential Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

n = x^B, then every decomposition B = u * v^w(v, w > 1) gives a representation n = (x^u)^{v^w}, or more representations, if w can be written as a power, or even a tower of powers.

For every $w > 1, w \le max(B_k)$

• for every prime p_k count the decompositions $p_k^{B_k} = p_k^{u_k} * p_k^{w*v_k}$, so $B_k = u_k + w * v_k$. So we have to count the number of multiples of w up to B_k (including 0), and this equals $[B_k/w] + 1$.

Exponential Towers (4/4)

Algorithm

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponential Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

• The number of representations for this w equals $\prod([B_k/w] + 1), v = 1$ is not allowed, however, so the actual count for this w is: $\prod([B_k/w] + 1) - 1$.

multiply with the number of ways to write w as a tower of powers (of height ≥ 1). The algorithm was given above, but for each representation: w = r^s we have to count (recursively) the number of representations of s.

Sum over all w > 1, $w \le max(B_k)$.

First Date (1/2)

- Absurdistar Roads
- Battle for Silver
- Card Trick
- Diagrams & Tableaux
- Exponentia Towers
- First Date
- Grachter
- Highway of the Future
- Infix to Prefix
- Jingle Balls

The Hard Way: $\mathcal{O}(1)$, but complicated

- Implement JulianDateToDayNr() and DayNrToGregorianDate().
- Calculate
 - DayNrToGregorianDate(JulianDateToDayNr(Y, M, D)
 + 1).
- However, DayNrToGregorianDate() is quite complex!
- You can avoid much of the complexity by using the standard library: GregorianDate class in Java, or gmtime() function in C/C++.

First Date (2/2)

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

The Easy Way: $\mathcal{O}(1)$ by building a LUT

- Walk all dates in the interval (approx. 3 million).
- Keep track of the Julian date and the Gregorian date of the next day; build a lookup table.
- You only need to implement a 'proceed-to-next-day' for the Julian and Gregorian calendars, which is easy.

Other algorithms are also possible, e.g. careful bookkeeping of the number of skipped dates.

Grachten

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Use intercept theorem

- AC : AT = BD : (TA + AB)
- Solve for $TA \Rightarrow TA = \frac{AB \cdot AC}{BD AC}$
- Compute greatest common divisor to reduce the fraction

Highway of the Future (1/2)

Absurdistar Roads

Battle for Silve

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Problem

Given a collection of line segments, find the number of line segments going through the point in which the maximum number of line segments intersect.

Considerations

■ Car speed (integer, 1 ≤ v ≤ 100), integer start times, and length of highway (100) severely limit the amount of possible collisions over a large collection of cars.

Collisions are not always on integer coordinates.

Highway of the Future (2/2)

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

- For each car: consider all cars which arrive earlier than this car but depart later. These are precisely the cars that it passes on the highway.
- One list ordered by arrival, and one list ordered by departure.
- There are other ways to consider only the necessary cars.
- Some pitfalls for example:
 - Two identical cars always require at least two lanes.
 - Intersections that are not on the highway (x < 0 or x > 100).

Infix to Prefix

Absurdistar Roads

Battle for Silve

Card Trick

- Diagrams & Tableaux
- Exponentia Towers
- First Date
- Grachter

Highway of the Future

Infix to Prefix

Jingle Balls

- Create a lookup table.
- For each substring of the input calculate the maximal and minimal possible value (if this substring represents a subexpression). Short strings first.
- The values for the substring that starts at position x and has length l are stored in an array, at position (x, l).
- These values then are used to calculate the values for longer strings, using these rules:
 - $\ \ \, \max(x+y)=\max(x)+\max(y)$
 - max(x y) = max(x) min(y)
 - max(-x) = min(x)
 - and equivalent rules for min.
- If n is the length of the string, the array to be filled has about n * n/2 elements.

Jingle Balls (1/2)

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Extended problem

- Given a decorated tree T and integer K, determine whether it is possible to end up with exactly K balls in T such that the balls are balanced.
- Determine how many balls must be moved within T or brought into T.

Recursive solution

- If K is even, put K/2 balls in left subtree and K/2 balls right.
- If K is odd, try both ways: (K + 1)/2 left and (K − 1)/2 right, or the other way around.

Jingle Balls (2/2)

Absurdistar Roads

Battle for Silver

Card Trick

Diagrams & Tableaux

Exponentia Towers

First Date

Grachten

Highway of the Future

Infix to Prefix

Jingle Balls

Time complexity

- B = total number of balls
- Depth of the tree is bound by $log_2(B)$
- Time complexity for recursive search $\mathcal{O}(B^{1.69})$

Linear time algorithm

- Any subtree needs to consider at most two different values K.
- Subtrees at depth *d* of the tree: consider K = ⌊B/2^d⌋ and K = ⌈B/2^d⌉
- Or use memoization.