Problems

Absurdistan

 RoadsBattle for Silver
Card Trick
Diagrams \& Tableaux

Exponential Towers

First Date
Grachten
Highway of the Future

Infix to Prefix
Jingle Balls

ПLWERTII

Absurdistan Roads (1/2)

Problem

Given shortest distances in a connected graph with N vertices and edges, reconstruct the original graph.

Solution

- Let H be the graph given by the shortest distances.
- Minimum spanning tree T of H is part of the solution.
- Take a set S and its complement \bar{S}.
- The shortest distance between two vertices in S and \bar{S} must be realized over one edge.
- Start with $S=\{1\}$, at each step add the shortest edge between S and \bar{S} - this is Prim's algorithm.

Absurdistan Roads (2/2)

```
Battle for Silver
```

Card Trick
Diagrams \&
Tableaux
Exponential
Towers
First Date
Grachten
Highway of the
Future
Infix to Prefix
Jingle Balls

Solution

■ ...

- Spanning tree T has $N-1$ edges, so we need one more edge.
- Find the shortest distance in H that is not possible using T, add it as an edge.
- Total time complexity is $\mathcal{O}\left(N^{2}\right)$.

Battle for Silver

Find all cliques in given graph: Clique Problem (NP-Complete). Note that graph is planar! Kuratowski"s theorem: Maximum clique size is 4 . Therefore, naïve approach suffices:

Naïve approach
■ Find all cliques of size 2 (given by all edges);

- Find all cliques of size 3;

■ Find All cliques of size 4;

- Output loot of clique that provides highest loot (not from the largest clique)!

Card Trick

Naïve approach

- Try X random card configurations and calculate final card
- Depending on X : either too slow or incorrect, probably both

Solution

■ Insight: for every known card, the probability is 1
■ For every unknown card, try every possibility

- Speed up with dynamic programming

Diagrams \& Tableaux (1/2)

Absurdistan
Roads
Battle for Silver
Card Trick
Diagrams \& Tableaux

Exponential Towers

First Date
Grachten
Highway of the Future

Infix to Prefix Jingle Balls

Problem

- Given a diagram, count the corresponding tableaux
- Given \square, count

Diagrams \& Tableaux (2/2)

Solution

■ Maximum output: 27 million
■ Backtracking: top to bottom, bottom to top, left to right, right to left

- Don't forget to prune the search tree: e.g. never put a number $<k$ in the k th row from the top when going from bottom to top
■ Dynamic programming: e.g. over the number of different columns; a columns of height H admits $\binom{N}{H}$ different labelings
- There even exists a closed formula takes $\mathcal{O}\left(N^{2}\right)$ steps to evaluate

Exponential Towers (1/4)

Some preliminaries

- Let $n=\prod p_{i}^{n_{i}}$, how many ways to write n as a power?
- let $g=\operatorname{gcd}\left(n_{i}\right)$, and let $t=\prod p_{i}^{n_{i} / g}$.
- Then $n=t^{g}$.

■ Every decomposition $g=u * v$ gives rise to a representation of n as a power (and vice versa):

$$
n=t^{u * v}=\left(t^{u}\right)^{v}
$$

Exponential Towers (2/4)

And now for the problem

- Let $n=a^{b^{c}}$, let g be the gcd of the exponents of a, and let $a=x^{g}$,
- then $n=x^{g * b^{c}}$, let $B=g * b^{c}$, so $n=x^{B}$. Forget about x.
- B can be huge, but its prime decomposition is easily obtained: $B=\Pi p_{k}^{B_{k}}$.

Exponential Towers (3/4)

Algorithm

- $n=x^{B}$, then every decomposition $B=u * v^{w}(v, w>1)$ gives a representation $n=\left(x^{u}\right)^{v^{w}}$, or more representations, if w can be written as a power, or even a tower of powers.
- For every $w>1, w \leq \max \left(B_{k}\right)$

■ for every prime p_{k} count the decompositions $p_{k}^{B_{k}}=p_{k}^{u_{k}} * p_{k}^{w * v_{k}}$, so $B_{k}=u_{k}+w * v_{k}$. So we have to count the number of multiples of w up to B_{k} (including 0), and this equals $\left[B_{k} / w\right]+1$.

- ...

Exponential Towers (4/4)

Algorithm

- The number of representations for this w equals $\Pi\left(\left[B_{k} / w\right]+1\right), v=1$ is not allowed, however, so the actual count for this w is: $\Pi\left(\left[B_{k} / w\right]+1\right)-1$.
- multiply with the number of ways to write w as a tower of powers (of height ≥ 1). The algorithm was given above, but for each representation: $w=r^{s}$ we have to count (recursively) the number of representations of s.
- Sum over all $w>1, w \leq \max \left(B_{k}\right)$.

First Date (1/2)

The Hard Way: $\mathcal{O}(1)$, but complicated
■ Implement JulianDateToDayNr() and DayNrToGregorianDate().

- Calculate

DayNrToGregorianDate(JulianDateToDayNr(Y, M, D) + 1).

- However, DayNrToGregorianDate() is quite complex!
- You can avoid much of the complexity by using the standard library: GregorianDate class in Java, or gmtime() function in $\mathrm{C} / \mathrm{C}++$.

First Date (2/2)

The Easy Way: $\mathcal{O}(1)$ by building a LUT

■ Walk all dates in the interval (approx. 3 million).

- Keep track of the Julian date and the Gregorian date of the next day; build a lookup table.
- You only need to implement a 'proceed-to-next-day' for the Julian and Gregorian calendars, which is easy.

Other algorithms are also possible, e.g. careful bookkeeping of the number of skipped dates.

Grachten

Absurdistan

 RoadsBattle for Silver
Card Trick
Diagrams \& Tableaux

Exponential Towers

First Date
Grachten
Highway of the Future

Infix to Prefix
Jingle Balls

Use intercept theorem

- $A C: A T=B D:(T A+A B)$
- Solve for $T A \Rightarrow T A=\frac{A B \cdot A C}{B D-A C}$
- Compute greatest common divisor to reduce the fraction

Highway of the Future (1/2)

Problem

Given a collection of line segments, find the number of line segments going through the point in which the maximum number of line segments intersect.

Considerations

■ Car speed (integer, $1 \leq v \leq 100$), integer start times, and length of highway (100) severely limit the amount of possible collisions over a large collection of cars.
■ Collisions are not always on integer coordinates.

Highway of the Future (2/2)

Solution

■ For each car: consider all cars which arrive earlier than this car but depart later. These are precisely the cars that it passes on the highway.

- One list ordered by arrival, and one list ordered by departure.
- There are other ways to consider only the necessary cars.
- Some pitfalls for example:
- Two identical cars always require at least two lanes.
- Intersections that are not on the highway ($x<0$ or $x>100$).

Infix to Prefix

- Create a lookup table.

■ For each substring of the input calculate the maximal and minimal possible value (if this substring represents a subexpression). Short strings first.

- The values for the substring that starts at position x and has length I are stored in an array, at position (x, I).
- These values then are used to calculate the values for longer strings, using these rules:
- $\max (x+y)=\max (x)+\max (y)$
- $\max (x-y)=\max (x)-\min (y)$
- $\max (-x)=-\min (x)$
- and equivalent rules for min.
- If n is the length of the string, the array to be filled has about $n * n / 2$ elements.

Jingle Balls (1/2)

Extended problem

- Given a decorated tree T and integer K, determine whether it is possible to end up with exactly K balls in T such that the balls are balanced.

■ Determine how many balls must be moved within T or brought into T .

Recursive solution

- If K is even, put $K / 2$ balls in left subtree and $K / 2$ balls right.
- If K is odd, try both ways: $(K+1) / 2$ left and $(K-1) / 2$ right, or the other way around.

Jingle Balls (2/2)

Time complexity

- $B=$ total number of balls
- Depth of the tree is bound by $\log _{2}(B)$
- Time complexity for recursive search $\mathcal{O}\left(B^{1.69}\right)$

Linear time algorithm

- Any subtree needs to consider at most two different values K.
- Subtrees at depth d of the tree: consider $K=\left\lfloor B / 2^{d}\right\rfloor$ and $K=\left\lceil B / 2^{d}\right\rceil$
- Or use memoization.

